
The Phobos File Catalog and 
Distributed Disk

Maarten Ballintijn / MIT

4-Sep-2002



Agenda

• Goals and Constraints
• Architecture

• Technologies
• Current Status
• Future Developments

• Related Technologies



Goals and Constraints

• Goals for Distributed Disk
– Distribute I/O

• Limits in disk speed, network speed

– Use cheap disk

– No single point of failure

– PhAT (batch), PROOF (interactive)



Goals and Constraints

• Goals for File Catalog
– Automate handling of a few 10^5 files

• Provide a catalogue

• Stageing (of collections)

– Transparent use of multiple disk pools

– Optimize disk usage

– Implement policies

– ``Scatter’’ files



Goals and Constraints

• Constraints
– Environment

• Secure Linux clusters in different domains
• HPSS interface
• International collaboration

– Manpower restriction
• Implement essential features only
• Aim for low maintenance

– Reuse vs. build



Architecture

• HPSS
– Use as backing for all files

– Interact via FTP interface

• Disk Pools
– Stores Instances (copies of Files in HPSS)

– Collection of disk storage (in a cluster)

– Managed as single entity, one File Daemon



Architecture

• Database
– Persistent storage of File meta data
– Configuration data
– Interface between UI and File Daemons

• API
– Translate Filename to physical location 

(“root://rcas4014//data1/PhoHit1234s12.root”)
– To be extended with more funtionality



Architecture

• Web Application
– User Interface
– Policy decisions

• File Daemon
– Schedules and Executes file manipulations and 

monitoring for a pool
– Use plugin scripts for actual operations
– E.g Plugins know to get a file from HPSS



Architecture

Disk pool

DB HPSS

CatD

Apache

Node

Workstation

Mozilla

PHAT

Job

Table

Node
Node



Technologies

• Perl
– Well suited for systems programming
– Many available modules (mod_apache, DBI)

• Mason
– Template system for web applications
– Provides caching

• DBI
– Database independence
– Apache persistent DB connection support



Technologies

• Apache
– The standard solution
– Integrates well with the other components

• Oracle
– Reliable, versatile, fast enough
– Leverage existing knowledge and infrastructure

• SSH
– Provide secure communications
– Leverage existing infrastructure



Current Status

• In production since April 2002
• Currently Implemented:

– Authenticated access, authorization levels
– Querying and browsing of Files, Instances, 

Pools
– Stageing of Files from HPSS or other pools
– Deleting Instances
– API for instance lookup



Current Status

• Issues and missing features
– HPSS synchronization

– Oracle connectivity

– Help system

– Job scheduling



Current Status

55189119698Total

139712785PhoSmMCHits

252634758PhoTrkDST

3113347078PhoHit

2013325077PhoRaw

Size (Gb)# FilesType

Files registered in the Catalog



Current Status

• 3 Pools defined
– RCF: 153 disks / 17 Tb , 79% full

– Pharm: 18 disks / 983 Gb, 82% full

– Pdev: 12 disks / 1 Tb

• Instances
– 35,000 Instances

– 7,000 not yet used

– 130,000+ TPhDST requests (avg 900 / day)

– 1 Instance was requested 202 times!



Future developments

• Improve HPSS synchronization
• New API

– TPhGrid based on TGrid virtual interface

– Web services (HTTP, XML-RPC, SOAP)

• Improve UI and extend functionality

• Automatic File migration, space reclaim
As required by users and data volume …



Related Technologies

• PROOF – Parallel Root Facility
Bring the KB to the PB not the PB to the KB

(more on the next slides)

• GRID Computing
– Authentication, Authorization, Single Sign-on

– File Catalogues, Replication services

– Resource brokers

Migrate to fully GRID based infrastructure over time



PROOF – Parallel ROOT Facility

• Collaboration between core ROOT group at 
CERN and MIT Heavy Ion Group

n Rene Brun

n Fons Rademakers

n Gunther Roland

n Maarten Ballintijn

• Part of and based on ROOT framework

• Currently no external Technologies

• ROOT since 1995, PROOF started 2001

• A wealth of info at http://root.cern.ch



PROOF Architecture

• Data Access Strategies
– Local data first, also rootd, SAN/NAS

• Transparency
– Input Objects copied from Client
– Output Objects merged, returned to Client

• Scalability and Adaptability
– Dynamic packet size (specific workload, slave 

performance, dynamic load)
– Heterogeneous Servers

• Migrate to multi site configurations



Parallel Analysis of Event Data

root

Remote PROOF Cluster

proof

proof

proof

TNetFile

TFile

Local PC

$ root

ana.C
stdout/obj

node1

node2

node3

node4

$ root

root [0] tree.Process(“ana.C”)

$ root

root [0] tree.Process(“ana.C”)

root [1] gROOT->Proof(“remote”)

$ root

root [0] tree.Process(“ana.C”)

root [1] gROOT->Proof(“remote”)

root [2] dset->Process(“ana.C”)

ana.C

proof

proof = slave server

proof

proof = master server

#proof.conf
slave node1
slave node2
slave node3
slave node4

*.root

*.root

*.root

*.root

TFile

TFile



PROOF Future

• Introduce GRID services
• Implement GRID driven configurations

• Scale to multi site, WAN, proof clusters
• Layer services on basic PROOF layer



This slide intentionally left blank


